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Abstract 

.I large # matrix model of a general complex matrix generates dynamical triangu- 
lations in which the triangies can be chequered (i.e. c&wed so that neighbours 
are opposite coiours). Gravity and the multicritical matter in such triangulations 
is described by the KdV-type equations found in the hermitian matrix model but 
without the doubling of degrees of freedom. However, by tuning further couplings 
It is possible to obtain a series of more general string equations with redoubled 
degrees of freedom. Other critical points give the non-perturb&w behaviour seen 
in models of unitary matrices. 
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1. Recent progress in understanding the partition function for non-perturbative 

two dimensional quantum gravity coupled to matter systems with central charge 

c 5 1, equivalently non-perturbative string theory in one dimension or lessjl] -131, 

has generated considerable interest in matrix models. These authors used N x N 

hermitian matrices H as the dynamical variables and an action whose potential is 

just a trace over some polynomial of H: The perturbation expansion for such a 

model may be understood as summing over triangulations’ of arbritrary genus two 

dimensional surfaces. 

We have previously shown that complex matrices M (with no hermitian con- 

straint) may be naturally interpreted[4] as summing over chequered triangulations of 

orientable surfaces. These are triangulations in which the polygons are divided into 

triangles in the obvious way, and chequered, meaning the triangles are coloured 

biack and white in such a way that neighbouring triangles are always opposite 

colours (as in fig.1). The colouration is directly associated with the underlying 

matrices: white for M, and black for Mt. For more details we refer the reader to 

ref.[4], in particular we solve there the counting problem for chequered spheres and 

torii, and apply these interpretations to other matrix models. 

Here we will investigate the physics in such chequered triangulations. We 

will show that the critical points for the simplest potentials, indexed by an 

integer k = 2,3,4. ., yield the string equations found in hermitian matrix models, 

except without the doubling of degrees of freedom recently exhibited by Bachas 

and Petropoulos[5!. This suggests that the complex matrix model is the more 

fundamental. 

However, by tuning various couplings which are irrelevant on the sphere one 

can obtain a finite sequence of more general equations for each value of k: indexed 

by an integer m = l? 2,. ., which involve redoubled degrees of freedom. We thus 

think of the usual k-critical behaviour as having m = 0. We investigate the gravity 

+eo.uence C,k! m)=(2.1). (2:2), (2,3), and the (,k: m)=(3:1) case here. The other cases 

will be reported elsewhere. The (2.2) critical point is particularly interesting. We 

will show that it involves a pair of Painlevd I equations 72+ = z/n& - 4pi - fp$ as 

1 We use this term ioosely. Polygon&ions would be a better word since in general 
not just 3-sided polygons are used. 
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in ref.:S], but the string equations are given by: 

O=R+ and o=,-af-~R-R”+;(R’)’ 

We also uncover a curious form of universal relation between the orthogonal 

polynomial recursion relation coefficients. 

There are other critical points in complex matrix models than those above. 

The simplest case is shown to correspond to the le = 1 critical point found in models 

of unitary matrices(6][7]. Very likely multicritical generalisations of this point give 

the other string equations found in these references. 

2. Let us briefly summa&e the material from ref.[4] that will be needed here. 

We choose the generating function of the model to have a polynomial action in M 

and Mt, and the invariance M --+ VtMW w h ere V and W are arbritrary unitary 

matrices. This fixes the partition function to be 

where U is a polynomial of the form (gl was set to 7 in ref.[4]): 

U(MtM) = tr{ c g,(MtM)‘} . 
P>1 

(2) 

The r&z of cosmological constant will be played by 7. “-‘I stands for the presence 

of a normalisation constant which we take so that 2 = 1 when only the g1 term is 

non-zero. It is necessary that this term always be non-zero since it is only then that 

one has a triangulation interpretation. 

11-e can integrate out the “angular” modes leaving an integral over the eigen- 

values X of MtM, which are non-negative: 

Z(gp/y) - igd”X A’(A) exp{-: U(X)} (3) 

where A is the Vandermonde determinant. Introducing the variable y and writing 

dp(y) = dy exp{-X/y U(y)}, we define orthogonal polynomials P,,(y) and normal- 

isation coefficients h, and A, so that 

P,(y) = y” A lower powers n=l.Z.... 

G(y) J’n(y)pm(y) = hn&n (4) 

and 
1 

-4W Y J’:(Y) = Anh, . 
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2 =exp(-r) can then be expressed in the standard way[S] in terms of ho and 

R, = h,lh,-1 I an d the polynomials determined by the recursion relations: 

Ye, = P-+1(y) +-W’,(Y) + RnJ’n-I(Y) (5) 

By considering integrals over the measure dp of yP,dP,,/dy, P,,dP,,/dy and 

P,-,dP,,/dy one can derive recurrence relations for the coefficients A, and R,. In 

the large N limit the coefficients become continuous functions of n/N, so it is helpful 

to write z = n/N, E = l/N, r(z) = R, and a(z) = a,. To enable us to write the 

equations in compact form for an arbritrary action U we define orthonormal eigen- 

kets lz >, operator i such that iI+ >= zI+ >, and shift operators Stlz >= /++c > 

S/z >= jz--e >. Finally, defining the expressions 

n(z) =< 4~,(d)l~ > ) (6) 

iI(z) = yo- < “/StU,(~)]z > (7) 

where $ = St + ST(~) + a(2) and V,(Q) = CPzl pg@-‘, the difference equations 

can be succinctly written[4]: 

ii(z) +fi(zse) = a(LTyqz) (8) 

P(z)n(z)n(z-e) = i?(z) . (9) 

3. The spherical contribution to ?C’ was already analysed in ref.[4]. It is obtained 

by dropping all E dependence in the above equations. It is entirely equivalent to 

the hermitian matrix model for an even potential[S], even off-criticality, up to some 

factors of two which may readily be adsorbed in the couplings. In this limit one 

sees from (8) and (9) that 

4T(Z) = a’(z). (10) 

The alternative solution R = 6 = 0, which we will calI the “ghost”, is ruled out by 

matching to small 7 perturbation theory (where one recovers an interpretation in 

terms oi irianguiations): One may readily show that in the limit 7 + 0, a(z) = T(Z) = 

0 and hence 0. = 91 f 0. Nevertheless the ghost plays a r6le because the double 

scaling limit lacks this information and must be consistent with both solutions.’ 

’ This is analogous to the simpler case of determining the sign of the sphere 
contribution in the Painleve I equationIll. 
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Substituting (10) back into (8) gives 

w(a) = 112 c Sp(mpp!:p2P);)! . PZ1 
In ref.[4]we chose couplings gi] so that gtl = 7 in order to have a direct interpreta- 

tion for 7 as cosmological constant. If we tune the couplings with the cosmological 

constant so that they are parameterized by g!] = gp(7/gl)P for p > 2 and change 

variables M -+ \r/ g1 7 M in 2, we recover eqns (l)-(2). Thus by universality we can 

generalise so that g1 need no longer equal 7. Now following Gross and Migdal[l] we 

consider the simplest polynomial actions with “k-critical” behaviour (k = 2,3,. . .). 

These are given by: 

k! (P - I)! 
” = (2p)! (k - p)! 

(-2)p+l for p=l,...,k 

sp = 0 for p=k+l,... 
(13) 

so that, from eqn. (12): 

w(a) = 1 - (1 - o)” (14) 

Equation (11) at + = 1 then shows that the model goes critical as 7 + 1. 

Introduce a scaling parameter 6 by defining 7 = 1 - ~6’~ and yz = 1 - zSzk, 

where P is the renormalised cosmological constant3 and 6 -+ 0. The bare string 

coupling scales as e = l/N = VP+’ m order to give a finite spherical contribution: 

2 +-l/k 

r”=>(2+l/k)(l+1/k) 

This is of course the same as observed beforejl]. From eqns. (14), (11) and (10) to 

lowest non-trivial order in the scaling parameter: 

a(z) = 1 - 6’a(z) 

,7(z) = ;:1 - 2Pp(z)] 

3 a misnomerj2] for k > 3 
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with p = a = zl/lr at the spherical level. Eqn. (16) is thus the required substitution 

for the double scaling limit. Up to the the unusual factor of 2 in (16), p is the string 

susceptibility as follows from the equation (proved as previously[l][4]): 

azr 
- = -$P(P) 
?P* 

(17) 

4. Actually, we will see shortly that it is not possible to derive the string 

equations for p from just the one term scaling equations (16). It is necessary to 

expand at least one of p or a in a power series in 6 involving powers up to S2*-*. 

We will show that the following complelely universal relation holds, when m = 0 up 

to a maximum power 6”-‘: 

;Pc4) + & (~‘1’) + s5 (24p’p’ + $J”’ + Ap(5) + &,“) + . 

(18) 

As m increases this is violated at successively lower powers. Here and elsewhere a 

prime denotes -vd/dr. This curious expansion is an observation we extract from 

our calculations for different k and m. As yet we have no deeper understanding of 

its meaning, or neater derivation. 

We now derive the string equations for the simplest actions parameterized in 

(13). For completeness we start with k = 2. (This case was already analysed in 

ref.[4]). From equation (13) we find 91 = 4 and g2 = -2/3 and thus 

f2=$2+Ld) 

fi = -264 + i(2 - p62) 
(19) 

so that Taylor expanding eqns. (8) and (9) to order 64 gives 

O++~p+++ 
62 (20) 

0 = 40 - .‘p - 2rr’r.s + (a” + a? - %Yp - pz f sz) 62 (21) 

Solving (20) for a perturbatively in 6 we obtain a = p + fp’6 + (ip” - pz + i.z) S2 + 

. . Xote that the relation (18) holds as advertised to order 6 but is violated above 
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this. Substituting into (21) one finds that all terms up to order 6s vanish and at S4 

one obtains 

y/12 - p2 + z = 0 (22) 

which under the trivial resealing Y -+ 2~ is precisely the Painlevk I equation for 

2D pure gravity found previously. However it is only one of the pair[S]; this is a 

consequence of the fact that (r is completely determined in the scaling limit (as 

a = p) by (18). 

For k = 3 one obtains R = 6 - 4a + ~[cz’ + P + T+] and fi = yz + 4r - i[?cz + 

~a-] where subscripts +/- mean arguments z i e. Substituting into eqn. (8) and 

expanding to order 6s one obtains 

0=4a-4p-2p’6+ 1 Za”-p”+4a2-6pa 

111, 1 ,,,, 
(23) 

_ 12p i 2a3 - zp”a 3 - pa” - p’a’ - 52 

Solving for Q one finds that (I: is given by the series (18) up to S3, but with 

the S4 contribution (-&?p”” - ip3 + a(~‘)* + &pp” + iz)S4. Expanding (9) and 

substituting this series one finds (eventually) that all terms of order less than 6’ 

disappear and one is left with 

1 -_ 
160’ 

“” + ;(p’)2 + appll - p3 + * = () 

Under the trivial resealing v -+ 2~, this is one of the pair of k = 3 multicritical string 

equations obtained previously[l];5]. 

For k = 4 one proceeds similarly. From now on the derivations become rather 

long but are handled admirably by the algebraic computing program FORM. The 

solution for a obtained from (8) consists of all the terms shown in (18) and at order 

68: 

35 :5 47 

Ez-Ep 
4+- 2 II 64p p - $Lppi41 + gp (pg)2 + -.$-piv - $ (pan)* _ &p~p~f~ 

SubstiLucing this into the expanded eqn.(9) one fmds at order 6’: under the same 

rescsiing v + 2~ as previously, the k = 4 multicritical equation derived from 

hermitian matrix models (c.f. Gross and hIigdal[l]). 
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We conclude that the k-critical behaviour given by the simplest actions Vk 

(as parameterized by eqn. (13)) g’ Ives the square root of the partition function for 

hermitian matrix models with even potentialsjl][5]. The v * 2~ resealing and eqn. 

(17) imply that, in the scaling limit, the vacuum energy r for the complex matrix 

is half the contribution from a 2N x 2N hermitian matrix. This fact together with 

observations in ref.[4] may be clues to a more direct derivation. 

5. We now generalise the actions Uk by adding terms that are irrelevant on 

the sphere. Thus for example, in this model the most general polynomial action of 

order 8 with k = 2 critical behaviour at the spherical level is: 

U=kzUz+kaUa+kqUq (25) 

where the ki are parameters such that kz > 0, xi ki # 0, and xi iki # 0. (The last 

condition ensures that the quadratic term coefficient is non-zero). By resealing y 

we can set C; ki = 1, then eqn.(l4) implies4 

W(U) = l- kz(l -a)’ - ks(1 -a)” -k& -a)” , (26) 

which implies the same scaling relations as before. Eliminating k4 and solving for 

a in terms of p using (8) we obtain: 

a = p f 1/2p’S - 
1 

2102 + 4(24 - 59k2 - 3k3)p2 + (24 + llkz - 3k3)p” 
4(48 - 13k2 - 6ks) I 

6’ (27) 

provided that the denominator does not vanish. Substituting this into (9) yields at 

order 6’: 

p”/12 - p2 + z/k, = 0 (28) 

jvhich is the same equation as (22) under the resealing of the (non-universal) string 

coupling Y --t vk, -1’4, a.nd consequently p + pk;“’ (to preserve (17)). We have 

thus demonstrated universality for generic values of the couplings. 

However, we must investigate the special case 6ks = 48 - 13kz. This is the first 

new critical point m = 1. In this case one finds that (9) vanishes to order b5 and (8) 

to order E3 without imposing any relation on n and p. The reason can be traced to 

4 IU is a linear functional of the action U. 
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R and R. Their constant terms (order 6’) which are generally non-zero vanish in 

this case. Indeed on the sphere they now read: 

;II = 6’(16 - kz)(p - a) + 64 {4(6 - kz)ap + (kz - 16)~~‘) - 4/3S6(6 - k2)a3 . 

5fi = 6’(16 - kz)(p - u) + S4 {2(16 - kz)ap - 2(6 - k,)(a’ + p’) - 52) 

+ 46’(6 - k2)a’p . 

(29) 
In general, at the mth critical point R and ?l are of order szm. It is convenient to 

define p+ = p i a. In terms of these, one finds at the next orders in (8) and (9) 

resectively: 

(202 - 5kzp: + 5/6kzpI;) - (kz - 16)(3p: - 1/2p”) = o (3Oa) 

(202 - 5kzp: + 5/6kzp:)p- + (kz - lS)(p: - 1/2p-p: + 1/2(p’_)2) = 0 (3ob) 

Eliminating the first expression between the two equations gives, provided k2 f 16: 

42 -P-P!! + 1/2(p’_)2 = 0 

By writing p- = x2 this equation may be solved exactly. The result is given in 

terms of Jacobi elliptic functions (cn is the cosine-amplitude): 

p- = av2A2 (1 + cn[A(z - B)]) / (1 - cn[A(z -B)]) (31) 

where A and B are integration constants. As such? for A # 0, it is doubly periodic in 

z with an infinite lattice of double poles, and does not have an asymptotic expansion 

in z. For A = 0 however we have p- = Y’/(z - B)‘. Substituting this back into 

(306) one finds the second term vanishess, and the eqn. reads: 

$ (P!# - (p+i2)’ + z/kz = 0 . (32) 

Thus from eqn. (28) we see that we recover the previous solution for p but with 

the correction -1 ‘1 t - B)*. Defining the string coupling g. = vk: ?V ,( l14! 2/w) we ;( 

obtain half the asymptotic expansion from hermitian models as before, but minus 

;np: 

r = $g;’ - 47/48 ln p - $g./24)’ ~ 

5 For A # 0 the second term is a constant, adsorbed by shifting z. 
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The change of sign in the torus contribution implies, by the arguments of Gross 

and Migdal[l], that the physics is non-unitary. Non-perturbatively, the partition 

function 2 vanishes linearly as e -+ B. This much can be deduced from the string 

equations. An analysis (e.g. along the lines of David[S]) is necessary to determine 

the values of A and B the matrix integral chooses. If the matrix model chooses 

A # 0 it seems reasonable to conclude that a (k, m)=(Z, 1) large N limit does not 

exist. If the matrix model chooses A = 0 and B = co, then a = p exactly and (32) 

collapses to the (k,m)=(2,0) universality class. 

6. The analysis above was only valid if kl # 16. The case kz = 16 is much 

more interesting. This gives the (2,2) critical point. From eqns. (29) we see that 

this corresponds to vanishing linear terms in R and fi. To investigate universality 

at this point we must generalise at least to a ksU$ term in (25). Eliminating kg by 

xi ki = 1, we find that the m = 1 critical point occurs at kd = 10 - 55k2/16 - 17k3/8 

and the m = 2 point further requires ks = 80/3 - lOk2/3. The ghost solution now 

becomes important. (For the m = 1 case the ghost merely reproduces the real 

solution). One finds on the sphere that 

Cl = ((8 - k2/4)pt - kJ4,&) 6* +. . 

ti = ((4 - k2/8)p2- + kz/8p: - *) 6* f. *. 
(34) 

Thus solving the ghost in the scaling limit gives: 

K+p: = z/4 and K-p’_ = z/4 

where n+ = kz/16. In this case n- = 2 - n+, but it is unrelated to K+ in general. (For 

a non-zero ka coefficient one finds the same n+ but n- = 2417 - 27k2/112 - 3kJ56). 

We wiil see that the string equation is consistent with both this behaviour and the 

true soiution p = a = w. 

One fmds that the first non-vanishing contribution to (8) is at order 6’: 

-2z/kz -c p;/2 - p;/12 = 0 (35) 

while (9) is order 6’ but has (35) as a factor. Thus one must write p+ = f + (1 (z)6 + 

(z(r)6Z - ‘. ., where f is a solution of (35) and solve for the coefficients C. One finds 
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at order 6” in (8), the following equation for (1: 

1 
-v+k2 
2 

-$e + $L f + (1 f - A(;‘) = 0 . 

(We use (35) to eliminate all differentials on f higher than the first). The ~5~ term 

in (9) vanishes if (1 is a solution of this equation, thus it is necessary now to solve 

for 52. From the C’ term in (8) we obtain a second order differential equation for 

(2 containing p-, f and 41, which is too long to write. Assuming that (2 satisfies 

this equation we find that the next order (6”‘) in (9) does not vanish identically 

but gives: 

where 

1 0 = p-a: - gLU” t ; (aqZ 

U-(Z) = 1 - n- (4Pz_ - $JE) 

(36a) 

Wb) 

This equation together with (35): 

a,=z- ( 2 
bc.+ 4p$- p1; =o 

> 

form the string equations for the (2,2) critical point. Remarkably all reference to the 

subleading functions i has disappeared. Note that the ghost is responsible for the 

specific solution ‘l- = lC+ = 0 which is the system of two Painlev6 equations from 

hermitian matrix non-even potentials[5]. However the true solution has asymptotic 

expansion: 

225 
- -gJ%-/2 - 

690675 IOn”_ /,I2 - . 
-i%zv ‘” 

- cc&.& (v2/,z5/2)2n+1 nl -. . . 

l ?p+ = ,lZ/KL - zv- ‘/=’ -. .-coeff.& (,?/p)“,L”-~)~2 - . . . 

the latter expansion being the standard onejl]. 

There appears to be no further critical phenomena for i~=2 beyond this point 

except for the possibility of setting K-=0 In that case the above string equations 

still apply. Nevertheless the critical behaviour is different: The p- expansion is 

truncated to the torus term, and the possible non-perturbative physics collapses 

to that of the (2,0) point. We call this the (2,3) critical point. It does not quite 
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satisfy the characterization below (29): The ghost solution on the sphere changes 

to p: - p? in R (higher powers of p- are accessible) and substituting into 3i one 

finds agreement with (35). 

7. We now briefly discuss the (k, m)=(3,1) point. The details of the derivation 

differ from the previous points, but the result is similar to the (2,l) case. For 

general values of the couplings irrelevant on the sphere one confirms universality 

of (24). However when the 6O terms vanish in 52 and fi one obtains the m = 1 

critical point. Order by order in 6 one obtains pairs of simultaneous second order 

differential equations for p- = f -t- <rS + &ha + . . . . For example for f one finds 

f” - 6fz = 0 from (8), and -2f3 + ff” - (f’)’ = 0 from (9). Solving these one 

finds p- = f = v’/(z - B)’ in the continuum limit, for some integration constant 

B. Unlike the (2,l) case there is no constant A. Solving the next orders gives 

(1 = -$p!+ + Cvs/(z - B)3 for some integration constant C, while Cr can only be 

solved implicitly. (This expansion agrees with the first two terms in (18)). All 

reference to (2 and C then disappears and one is left with the (3,0) equation for p+ 

(up to a resealing of Y and shift in z), This is analogous to (2,l) case. 

Finally we note that for the simplest action Vs another critical point, with 

k = 1, was observed in ref.[4]. We find that it is governed to all genus by the k = 1 

mKdV equation of ref.[6][7]. Translating from ref.[4], the critical point is at 7 = -3. 

Thus we set y = -3(1 - ~6s) and z = (1 - z6s)/(l -pa”). We find a = 3(1 - ac5*) 

and r = s(1 - 2p6’), with p = z/4 and a = 0 on the sphere. With the above scaling 

laws, equations (8) and (9) give a = z/2 - p in the scaling limit and the differential 

equation: 
0 = x(2 + 4 x2) - xl’ 

where p = z/2 t x2 

‘This can be expanded and shown to agree with the sphere and torus analysis in 

ref.[4]. Up to resealing, and the non-universal linear term in p, the above is as 

found in refs.;6];7;. Interestingly enough this solution implies that n = fi = 0 on 

the sphere so in this case the ghost is the real solution. The ghost evades our 

previous objections because this critical point is accessed on the second sheet of 

the sphere solution: u(r) = 1 i ,,G, as shown in ref.14;. It is thus disconnected 

from perturbation theory in y and does not have a triangulation interpretation. The 
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mXdV equations arise in the strong coupling phase of unitary matrix models[7]. As 

such they do not have a direct string interpretation either[lO], since the correct 

perturbation expansion yields integrals over products of unitary matrices. 

We stress that the critical points (k,m) however have equally valid inter- 

pretations in terms of triangulations as those from hermitian models. We have 

only scratched the surface of these new phenomena. It is obviously of interest to 

delineate the critical series further, especially the cases k = m which yield new 

string equations, and to understand how they fit into the KdV interpretation and 

the newly discovered Virasoro algebra[ll]. 
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Fig. 1: A portion of a chequered triangulation. 


